HERITAGE THERMAL SERVICES 1250 St. George Street East Liverpool, Ohio 43920-3400 Phone: 330-385-7337 Fax: 330-385-7813 www.heritage-thermal.com July 30, 2015 VIA UPS & OEPA AIR SERVICES OHSAS 18001: 2007 ISO 14001: 2004 ISO 9001: 2008 Mr. Erik Bewley OEPA-DAPC-NEDO 2110 E. Aurora Road Twinsburg, OH 44087 Mr. George Czerniak U.S. EPA Region V Mail Code AE-17J 77 West Jackson Chicago, IL 60604 RE: HERITAGE THERMAL SERVICES SEMI-ANNUAL STARTUP, SHUTDOWN, AND MALFUNCTION REPORT & SEMI-ANNUAL EXCESS EMISSIONS AND CMS REPORT Greetings: Please find enclosed a written report entitled Semi-Annual Startup, Shutdown, and Malfunction Report and Semi-Annual Excess Emission and CMS Report for Heritage Thermal Services. These reports are required by 40 CFR 63.10 and cover the time period of January 1, 2015 through June 30, 2015. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are certain penalties for submitting false information including the possibility of fine and imprisonment for knowing violations. Thank you and if you have any questions or comments, please call me at the above number. Sincerely, Stewart Fletcher General Manager Heritage Thermal Services # SEMI-ANNUAL STARTUP, SHUTDOWN, AND MALFUNCTION REPORT & SEMI-ANNUAL EXCESS EMISSION AND CMS REPORT For **Heritage Thermal Services** July 30, 2015 # <u>Section I – General Information</u> #### A. Facility Information | Facility ID: | 02-15-02-0233 | | |------------------------|---------------------------|--| | Responsible Official's | Stewart Fletcher | | | Name / Title: | General Manager | | | Street Address: | 1250 Saint George Street | | | City: | East Liverpool | | | State: | Ohio | | | Zip Code: | 43920 | | | Facility Name: | Heritage Thermal Services | | | Facility Local Contact | Vincent Waggle | | | Name: | Environmental Engineer | | - B. Relevant standard(s) or other requirement(s) that is/are the basis for this report: - 63.10(d)(5)(i) Periodic Startup, Shutdown, and Malfunction Reports - C. Are you requesting a waiver of recordkeeping and/or reporting requirements under the applicable relevant standard(s) in conjunction with this report? | □ 1¢2 □ 14(| □ Ye | es | X | No | |-------------|------|----|---|----| |-------------|------|----|---|----| If you answered yes, you must submit the application for a waiver of recordkeeping and/or reporting requirements together with this report. The application for waiver should include whatever information you consider useful to convince the Administrator that a waiver of recordkeeping or recording is warranted. (63.10(f)(3) #### Section II - Certification Based upon information and belief formed after a reasonable inquiry, I as a responsible official of the above-mentioned facility, certify the information contained in this report is accurate and true to the best of my knowledge. | Stewart Fletcher, General Manager | | |-----------------------------------|---------------| | Signature: Stat Har | Date: 7/30/15 | HERITAGE THERMAL SERVICES SEMI-ANNUAL SSMP, EE, & CMS REPORT July 30, 2015 ## Section III - Startup, Shutdown, and Malfunction Reports ### A. Startup, Shutdown, or Malfunction Actions All actions taken by Heritage Thermal Services during startup, shutdown, or malfunction events during the reporting period of **January 1, 2015 through June 30, 2015.** were consistent with the procedures specified in the facility's Startup, Shutdown, and Malfunction Plan. #### B. Malfunctions Please find in the table below a list of each malfunction, the durations, and a brief description of the type of malfunction that occurred during the reporting period of **January 1, 2015** through June 30, 2015. See next page for completed table | | | AMONGH I | Carl S | | | | | |-----|---------------------|------------------|------------------|-------------------|----------------------------------|---|--| | # | Name | Start Time | End Time | Duration
(min) | Cause
(report) | Cause Description | Corrective
Actions | | 1_ | тнс | 1/1/15
15:30 | 1/1/15
16:28 | 58.0 | Malfunction
Lance
Plugging | Plugging of the slurry lance caused poor combustion. | Cleared lance,
Restarted unit. | | 2 | тнс | 1/3/15
18:07 | 1/3/15
18:44 | 37.0 | Malfunction
Tank
Layering | Layering in T7 caused poor combustion and THC. | Reduced feeds.
Restarted unit. | | 3 | SCC
Temperature | 1/6/15 6:08 | 1/6/15 9:29 | 201.0 | Malfunction
Power
Failure | UPS power failure caused incinerator shutdown. | Repaired UPS.
Restarted unit. | | 3 | RJ DP | 1/6/15 6:10 | 1/6/15 9:26 | 196.0 | Malfunction
Power
Failure | UPS power failure caused incinerator shutdown. | Repaired UPS.
Restarted unit. | | 3 | Kiln
Temperature | 1/6/15 6:21 | 1/6/15 9:12 | 171.0 | Malfunction
Power
Failure | UPS power failure caused incinerator shutdown. | Repaired UPS,
Restarted unit. | | 3 | Total PB DP | 1/6/15 6:21 | 1/6/15 8:39 | 138.0 | Malfunction
Power
Failure | UPS power failure caused incinerator shutdown. | Repaired UPS,
Restarted unit. | | . 3 | RJ Blowdown
Flow | 1/6/15 7:36 | 1/6/15 8:57 | 81.0 | Malfunction
Power
Failure | UPS power failure caused incinerator shutdown. | Repaired UPS. Restarted unit. | | 4 | THC | 1/8/15 3:37 | 1/8/15 3:38 | 1.0 | Malfunction
Lance
Plugging | Plugging of the organic lance caused poor combustion. | Cleaned lance.
Restarted unit. | | 4 | THC | 1/8/15 3:47 | 1/8/15 4:19 | 32.0 | Malfunction
Lance
Plugging | Plugging of the organic lance caused poor combustion. | Cleaned lance. | | 5 | SDA ECIS
Flow | 1/30/15
22:49 | 1/30/15
23:14 | 25.0 | Malfunction
ECIS
Plugging | Frozen carbon caused plugging and interrupted flow. | Cleared plug. Added new carbon. Restart. | | 6 | RJ DP | 2/8/15
14:13 | 2/8/15
14:22 | 8.8 | Malfunction
Instrument | Damper control malfunction caused ID Fan stop. | Manually
adjusted
damper.
Restarted unit. | | 7 | RJ DP | 2/9/15 9:24 | 2/9/15
10:25 | 61.1 | Malfunction
Prior
AWFCO | Maintenance error caused ID fan shutdown | Restarted fan and unit | | 7 | SCC
Temperature | 2/9/15 9:29 | 2/9/15 9:37 | 8.4 | Malfunction
Prior
AWFCO | Maintenance error caused ID fan shutdown | Restarted fan | | 7 | Kiln
Temperature | 2/9/15 9:32 | 2/9/15 9:56 | 24.0 | Malfunction
Prior
AWFCO | Maintenance error caused ID fan shutdown | Restarted fan | | 8 | SDA ECIS
Flow | 2/12/15
16:44 | 2/12/15
17:35 | 51.1 | Malfunction
ECIS
Plugging | Wet and frozen carbon plugged feed hopper. | Cleared plug.
Restarted unit. | | # | Name | Start Time | End Time | Duration (min) | Cause
(report) | Cause Description | Corrective
Actions | |----|--|------------------|-----------------|----------------|---------------------------------|--|----------------------------------| | 9 | ТНС | 2/13/15
23:35 | 2/14/15
2:25 | 170.1 | Malfunction
Boiler Tube | Tube rupture caused immediate unit shutdown. | Shutdown unit
Repaired tube. | | 9 | RJ DP | 2/13/15
23:39 | 2/14/15
2:28 | 169.1 | Malfunction
Boiler Tube | Tube rupture caused immediate unit shutdown. | Shutdown unit
Repaired tube | | 9 | SCC
Temperature | 2/13/15
23:45 | 2/14/15
2:28 | 163.4 | Malfunction
Boiler Tube | Tube rupture caused immediate unit shutdown. | Shutdown unit
Repaired tube | | 9 | Kiln
Temperature | 2/13/15
23:48 | 2/14/15
2:28 | 160.3 | Malfunction
Boiler Tube | Tube rupture caused immediate unit shutdown. | Shutdown unit
Repaired tube. | | 9 | RJ Flow | 2/14/15
0:05 | 2/14/15
2:28 | 143.0 | Malfunction
Boiler Tube | Tube rupture caused immediate unit shutdown. | Shutdown unit
Repaired tube. | | 9 | Total PB DP | 2/14/15
0:11 | 2/14/15
1:20 | 69.0 | Malfunction
Boiler Tube | Tube rupture caused immediate unit shutdown. | Shutdown unit
Repaired tube. | | 9 | SDA ECIS
Pressure | 2/14/15
1:52 | 2/14/15
2:28 | 36.4 | Malfunction
Boiler Tube | Tube rupture caused immediate unit shutdown. | Shutdown unit
Repaired tube. | | 9 | Scrubber
ECIS Pressure | 2/14/15
1:56 | 2/14/15
2:28 | 32.3 | Malfunction
Boiler Tube | Tube rupture caused immediate unit shutdown. | Shutdown unit
Repaired tube. | | 10 | SDA ECIS
Flow
The previously lis | 2/17/15
4:49 | 2/17/15
4:55 | 5.7 | Malfunction
ECIS
Plugging | Wet and frozen carbon plugged feed hopper. | Cleared plug.
Restarted unit. | ** The previously listed 10 malfunctions occurred within a 60-day block period and have been reviewed in accordance with 63.1206(c)(2)(v)(3)(ii). Some OPL exceedances have been counted as a singular malfunction because they were the result of single initiating malfunction. Upon review of the individual malfunctions, HTS has determined that these 10 events were not the result of a common problem and no resulting changes have been made to the SSMP. | | | · · | | | 1 | | | |------------------|-------------|---------|---------|---------|-------------|-------------------------|------------------| | | | | | | | Level control | | | | | | | | i | malfunction caused loss | Repaired level | | | SCC | 2/18/15 | 2/18/15 | | Malfunction | of coolant level and | indicator. | | l 1 | Temperature | 17:35 | 17:43 | 7.8 | Instrument | AWFCO. | Restarted unit. | | | | | | | | Level control | | | | 1 | | | | | malfunction
caused loss | Repaired level | | | Kiln | 2/18/15 | 2/18/15 | | Malfunction | | | | Ι. | | | | | | of coolant level and | indicator. | | 1 | Temperature | 17:37 | 17:46 | 9.3 | Instrument | AWFCO. | Restarted unit. | | | | | | | | Unexpected and | | | l . | | | | | Malfunction | unpreventable | Restarted unit. | | ĺ | | 2/22/15 | 2/23/15 | | Combustion | combustion upset | Reviewed | | 2 | THC | 23:18 | 0:17 | 58.7 | Anomaly | caused THC event. | waste feeds. | | −−− | THE | 2,10 | 0.17 | 30.7 | Anomary | caused THC event. | waste reeds. | | | | | | | | l _ | l l | | l | | | | | | Pressure gauge | Replaced | | l | SDA ECIS | 2/26/15 | 2/26/15 | | Malfunction | malfunction caused | gauge. | | 3_ | Pressure | 14:08 | 14:39 | 31.3 | Instrument | OPL loss. | Restarted unit. | | | | | | | | 1 | | | | | | | | | Pressure gauge | Replaced | | | SDA ECIS | 2/26/15 | 2/26/15 | | Malfunction | malfunction caused | gauge. | | 3 | Pressure | 20:01 | 22:26 | 145.1 | Instrument | OPL loss. | Restarted unit. | | | 11033616 | 20.01 | 22,20 | [173.1 | Mounificate | 1 OI D 1033. | restarted tillt. | | # | Name | Start Time | End Time | Duration
(min) | Cause
(report) | Cause Description | Corrective
Actions | |----|----------------------|------------------|------------------|-------------------|--------------------------------------|---|---| | 4 | тнс | 3/4/15
21:24 | 3/4/15
22:06 | 42.1 | Malfunction
Tank
Layering | Layer of material in feed tank caused poor combustion. | Reduced flow.
Restarted unit. | | 5_ | SDA ECIS
Flow | 3/7/15
11:34 | 3/7/15
11:43 | 8.9 | Malfunction
ECIS
Plugging | Damp carbon caused plugging and flow drop. | Cleared hopper.
Restarted unit. | | 6 | THC | 3/14/15
1:00 | 3/14/15
1:59 | 60.0 | Malfunction
Lance
Plugging | Plug in slurry lance
caused poor
combustion and THC. | Cleared lance.
Restarted unit. | | 7 | SDA ECIS
Flow | 3/15/15
19:14 | 3/15/15
19:25 | 11.0 | Malfunction
ECIS Motor | Bad fuse caused motor
shutdown and carbon
flow loss. | Replaced fuse.
Restarted unit. | | 8 | SDA ECIS
Flow | 3/15/15
19:26 | 3/15/15
20:13 | 47.0 | Malfunction
ECIS Motor | Bad fuse caused motor
shutdown and carbon
flow loss. | Replaced fuse.
Restarted unit. | | 8 | SDA ECIS
Pressure | 3/15/15
19:54 | 3/15/15
20:34 | 40.8 | Malfunction
ECIS Motor | Bad fuse caused motor
shutdown and carbon
flow loss. | Replaced fuse.
Restarted unit. | | 9 | тнс | 4/2/15 3:11 | 4/2/15 4:09 | 57.9 | Malfunction Customer Packaging Error | Customer improperly packaged waste causing poor combustion. | Restarted unit. Contacted customer. | | 10 | SCC Pressure | 4/6/15
21:08 | 4/6/15
21:08 | 0.1 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused THC event. | Restarted unit.
Reviewed
waste feeds. | ** The previously listed 10 malfunctions occurred within a 60-day block period and have been reviewed in accordance with 63.1206(c)(2)(v)(3)(ii). Some OPL exceedances have been counted as a singular malfunction because they were the result of single initiating malfunction. Upon review of the individual malfunctions, HTS has determined that these 10 events were not the result of a common problem and no resulting changes have been made to the SSMP. | | | common pro | blem and no re | sulting chang | es have been mad | te to the SSMP. | | |----|--------------|------------|----------------|---------------|------------------|------------------------|-----------------| | l | | | | | | Unexpected and | | | | | | | | Malfunction | unpreventable | Restarted unit. | | | | 4/9/15 | 4/9/15 | | Combustion | combustion upset | Reviewed | | | SCC Pressure | 13:03 | 13:03 | 0.1 | Anomaly | caused pressure spike. | waste feeds. | | | | i | | | | Unexpected and | | | | | 1 | | | Malfunction | unpreventable | Restarted unit. | | | | 4/9/15 | 4/9/15 | | Combustion | combustion upset | Reviewed | | 2 | SCC Pressure | 16:10 | 16:10 | 1.0 | Anomaly | caused pressure spike. | waste feeds. | | | | | | | | | | | | | | | | | 1 | Replaced | | | | 4/14/15 | 4/14/15 | | Malfunction | Instrument malfunction | switch. | | 3 | RJ DP | 4:56 | 5:55 | 59.1 | Instrument | caused unit shutdown | Restarted unit. | | | | | _ | | | | | | | | | | | | | Replaced | | | SCC | 4/14/15 | 4/14/15 | | Malfunction | Instrument malfunction | switch. | | 3_ | Temperature | 4:58 | 5:56 | 58.0 | Instrument | caused unit shutdown | Restarted unit. | | [| | | _ | | | Unexpected and | | | | | | | | Malfunction | unpreventable | Restarted unit. | | | | 4/16/15 | 4/16/15 | | Combustion | combustion upset | Reviewed | | 4 | THC | 6:41 | 7:47 | 65.9 | Anomaly | caused pressure spike. | waste feeds. | | | | | | | | i | | | | | | | | Malfunction | Strong storm caused | | | l | | 4/20/15 | 4/20/15 | | Power | power loss and | | | 5 | RJ DP | 17:17 | 17:37 | 19.3 | Failure | shutdown. | Restarted unit. | | | | | | Duration | Cause | | Corrective | |-----|---------------------------|--------------------|------------------|----------|--------------------------------------|--|---| | # | Name | Start Time | End Time | (min) | (report) | Cause Description | Actions | | 5 | SDA ECIS
Flow | 4/20/15
17:19 | 4/20/15
17:37 | 17.2 | Malfunction
Power
Failure | Strong storm caused power loss and shutdown. | Restarted unit. | | 6 | THC | 4/20/15
18:54 | 4/20/15
19:54 | 59.9 | Malfunction
Line
Plugging | Feed line plug/purge caused combustion upset. | Cleared line.
Restarted unit. | | 7 | SCC Pressure | 4/22/15
16:05 | 4/22/15
16:06 | 1.0 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset caused pressure spike. | Restarted unit.
Reviewed
waste feeds. | | 8 | ESP Field #1
Current | 4/22/15
17:41 | 4/22/15
19:47 | 126.4 | Malfunction
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | . 8 | ESP Field #1
Current | 4/24/15
8:07 | 4/24/15
8:19 | 12.0 | Malfunction
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8 | ESP Field #1
Current | 4/24/15
13:25 | 4/24/15
13:31 | 5.8 | Malfunction
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8 | ESP Field #1
Current | 4/24/15
18:47 | 4/24/15
18:51 | 4.1 | Malfunction
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8 | SCC
Temperature | 4/24/15
21:09 | 4/24/15
23:34 | 145.6 | Shutdown
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit
Repaired
ground. | | 8 | Kiln
Temperature | 4/24/15
21:21 | 4/24/15
23:34 | 133.1 | Shutdown
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8 | THC | 4/24/15
21:39 | 4/24/15
21:41 | 2.1 | Shutdown
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8 | SDA ECIS
Pressure | 4/24/15
22:20 | 4/24/15
23:34 | 74.0 | Shutdown
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8 | Scrubber
ECIS Pressure | 4/24/15
_ 22:29 | 4/24/15
23:34 | 64.7 | Shutdown
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8 | RJ Blowdown
Flow | 4/24/15
22:39 | 4/24/15
23:34 | 54.9 | Shutdown
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit. Repaired ground. | | 8 | RJ DP | 4/24/15
23:01 | 4/24/15
23:34 | 32.9 | Shutdown
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8 | ESP Field #1
Current | 4/24/15
23:28 | 4/24/15
23:34 | 5.8 | Shutdown
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | # | Name | Start Time | End Time | Duration
(min) | Cause
(report) | Cause Description | Corrective
Actions | |----|-------------------------|------------------|------------------|-------------------|--------------------------------------|---|---| | 8_ | ESP Field #1
Current | 4/26/15
21:06 | 4/26/15
22:57 | 111.2 | Malfunction
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 8_ | ESP Field #1
Current | 4/27/15
5:02 | 4/27/15
5:53 | 50.8 | Malfunction
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit,
Repaired
ground. | | 8 | ESP Field #1
Current | 4/27/15
7:16 | 4/27/15
9:15 | 118.6 | Malfunction
ESP Ground
Wire | ESP problems resulting from bad ground wire caused OPL issues. | Shutdown unit.
Repaired
ground. | | 9 | тнс | 5/2/15
19:54 | 5/2/15
20:52 | 59.0 | Malfunction
Lance
Purging | Flush of DDP line caused lance to purge and cause THC. | Cleared line.
Restarted unit. | | 10 | ТНС | 5/6/15
14:16 | 5/6/15
15:16 | 59.9 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion upset
caused pressure spike. | Restarted unit.
Reviewed
waste feeds. |
63.1206(c)(2)(v)(3)(ii). Some OPL exceedances have been counted as a singular malfunction because they were the result of single initiating malfunction. Upon review of the individual malfunctions, HTS has determined that these 10 events were not the result of a common problem and no resulting changes have been made to the SSMP. | | | | | 2 | | | | |-----|-----------------|---------|---------|------|------------------|--------------------------|------------------| | | | | | | | Unexpected and | | | | | | | | Malfunction | unpreventable | Restarted unit. | | | | 5/13/15 | 5/13/15 | | Combustion | combustion upset | Reviewed | | 1 | THC | 3:09 | 4:07 | 57.9 | Anomaly | caused pressure spike. | waste feeds. | | | | | | | | 1 | | | | | | | | | Large molten mass fell | | | | | 5/13/15 | 5/13/15 | | Malfunction | from kiln into quench | | | 2 | SCC Pressure | 20:08 | 20:09 | 1.1 | Clinker Fell | causing pressure. | Restarted unit. | | | | | | | | | | | | | | | | | Ash build-up from SCC | | | | | 5/19/15 | 5/19/15 | | Malfunction | fell into quench causing | | | 2 | SCC Pressure | 4:56 | 4:57 | 1.1 | Clinker Fell | pressure. | Restarted unit. | | | | | | | | Unexpected and | | | | | | | | Malfunction | unpreventable | Restarted unit. | | | | 5/21/15 | 5/21/15 | | Combustion | combustion upset | Reviewed | | 3 | SCC Pressure | 2:04 | 2:05 | 1.1 | Anomaly | caused pressure spike. | waste feeds. | | | | | | | | Tanada predoute opine. | Waste regas. | | | | | | | | Ash build-up from SCC | | | | | 5/24/15 | 5/24/15 | | Malfunction | fell into quench causing | | | 4 | SCC Pressure | 18:29 | 18:30 | 1.1 | Clinker Fell | pressure. | Restarted unit. | | · · | | | | | _ Cillator 1 Oil | pressure. | restarted diffe | | | | | | | | Instrument malfunction | Restarted unit. | | | SCC Pressure | 5/25/15 | 5/25/15 | | Malfunction | caused ID fan | Investigated | | 5 | Using Seals | 14:08 | 14:08 | 0.5 | Instrument | shutdown | failure | | | Comp Com | 11.55 | 11.00 | 0.5 | - mad difficult | SHEEDWII | Tallele | | | | | | | | Instrument malfunction | Restarted unit. | | | | 5/25/15 | 5/25/15 | | Malfunction | caused ID fan | Investigated | | 5 | RJ DP | 14:14 | 15:11 | 56.9 | Instrument | shutdown | failure | | | | 1 111 | 1,57.11 | 50.5 | manament | JANUAGO WIII | tuituic | | | | | | | Malfunction | Shutdown of IF fan | | | | | 5/27/15 | 5/27/15 | | ID Fan | caused loss of drat and | | | 6 | THC | 16:11 | 17:12 | 60.1 | Shutdown | unit upset. | Restarted unit. | | - 0 | 1110 | 10.11 | 15.12 | 00.1 | Situtowii | unit upset. | _ restance unit. | | | | | | | | Moderate ash fall | 12 | | | | 5/28/15 | 5/28/15 | | Malfunction | caused system pressure | | | 7 | SCC Pressure | 19:40 | 19:41 | 1.1 | Clinker Fell | spike and upset. | Destanted unit | | | 1 acc i lessure | 17.40 | 19.41 | [-1 | Chuker ren | L shike and abset. | Restarted unit. | | # | Name | Start Time | End Time | Duration
(min) | Cause
(report) | Cause Description | Corrective
Actions | |----|---------------------|------------------|------------------|-------------------|--------------------------------------|---|---| | 7 | THC | 5/28/15
19:44 | 5/28/15
20:44 | 60.1 | Malfunction
Clinker Fell | Moderate ash fall caused system pressure spike and upset. | Restarted unit. | | 8 | SCC Pressure | 6/2/15
22:11 | 6/2/15
22:11 | 0.1 | Malfunction
Instrument | Instrument malfunction
caused ID fan
shutdown | Restarted unit.
Replaced UPS
battery. | | 9 | RJ DP | 6/2/15
22:16 | 6/2/15
23:25 | 69.7 | Malfunction
Instrument | Instrument malfunction
caused ID fan
shutdown | Restarted unit.
Replaced UPS
battery. | | 9 | SCC
Temperature | 6/2/15
22:24 | 6/2/15
23:25 | 61.9 | Malfunction
Instrument | Instrument malfunction
caused ID fan
shutdown | Restarted unit
Replaced UPS
battery. | | 9 | Kiln
Temperature | 6/2/15
22:29 | 6/2/15
23:25 | 56.1 | Malfunction
Instrument | Instrument malfunction
caused ID fan
shutdown | Restarted unit
Replaced UPS
battery. | | 10 | | 6/3/15 0:36 | 6/3/15 1:33 | 56.2 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion upset
caused pressure spike. | Restarted unit
Reviewed
waste feeds. | ** The previously listed 10 malfunctions occurred within a 60-day block period and have been reviewed in accordance with 63.1206(c)(2)(v)(3)(ii). Some OPL exceedances have been counted as a singular malfunction because they were the result of single initiating malfunction. Upon review of the individual malfunctions, HTS has determined that these 10 events were not the result of a common problem and no resulting changes have been made to the SSMP. Malfunction Lightning from storm 6/5/15 6/5/15 Power caused brief power loss Power restored. SCC Pressure 15:11 15:11 0.2 Failure and unit shutdown. Unit restarted. Malfunction Lightning from storm SCC 6/5/15 6/5/15 Power caused brief power loss Power restored. Temperature 15:19 16:20 61.9 Failure and unit shutdown. Unit restarted. Malfunction Lightning from storm 6/5/15 6/5/15 Power caused brief power loss Power restored. RJ DP 59.9 15:19 16:19 Failure and unit shutdown. Unit restarted. Malfunction Lightning from storm **SDA ECIS** 6/5/15 6/5/15 Power caused brief power loss Power restored. Flow 15:24 15:25 Failure 1.1 and unit shutdown. Unit restarted. Malfunction Lightning from storm SDA ECIS 6/5/15 6/5/15 Power caused brief power loss Power restored. Flow 15:35 15:36 Failure and unit shutdown. Unit restarted. Malfunction Lightning from storm 6/5/15 6/5/15 Power caused brief power loss Power restored. Scrubber pH 15:39 15:48 8.4 Failure and unit shutdown. Unit restarted. Malfunction Plugging in the pump 6/9/15 6/9/15 Scrubber suction line caused Cleared line. 2 Total PB Flow **Pumps** flow loss. 11:02 11:35 32.8 Restarted unit. Malfunction Plugging of the hi btu Switched feed 6/15/15 6/15/15 Lance lance caused pressure tank. Restarted 9:59 **SCC Pressure** 9:59 0.0 Plugging surge. unit. | | 医蛋白膜 | Taken. | | NEE | | | | |---|---------------|------------------|-----------------|-------------------|----------------------------|---|--------------------------------| | # | Name | Start Time | End Time | Duration
(min) | Cause
(report) | Cause Description | Corrective
Actions | | | | | | | | | | | 4 | SCC Pressure | 6/18/15
21:52 | 6/19/15
2:48 | 295.7 | Malfunction
Boiler Tube | Rupture of boiler tube caused loss of ID fan. | Shutdown unit for tube repair. | | | | | | | Shutdown | Immediate shutdown | | | 4 | тнс_ | 6/18/15
21:57 | 6/19/15
2:12 | 255.1 | Boiler Tube
Outage | resulting from boiler tube rupture. | Shutdown unit for tube repair. | | | scc | 6119115 | 64045 | | Shutdown | Immediate shutdown | | | 4 | Temperature | 6/18/15
21:59 | 6/19/15
2:48 | 288.9 | Boiler Tube
Outage | resulting from boiler tube rupture. | Shutdown unit for tube repair. | | | Kiln | 6/18/15 | 6410415 | | Shutdown | Immediate shutdown | | | 4 | Temperature | 22:00 | 6/19/15
2:48 | 287.8 | Boiler Tube
Outage | resulting from boiler tube rupture. | Shutdown unit for tube repair. | | | | 6/18/15 | 6/19/15 | | Shutdown
Boiler Tube | Immediate shutdown | Sh at | | 4 | RJ DP | 22:05 | 2:48 | 283.1 | Outage | tube rupture. | Shutdown unit for tube repair. | | | | 6/18/15 | 6/19/15 | | Shutdown
Boiler Tube | Immediate shutdown resulting from boiler | Shutdown unit | | 4 | RJ Flow | 22:22 | 2:48 | 266.0 | Outage | tube rupture. | for tube repair. | | | RJ Blowdown | 6/18/15 | 6/18/15 | | Shutdown
Boiler Tube | Immediate shutdown resulting from boiler | Shutdown unit | | 4 | Flow | 22:33 | 22:39 | 6.3 | Outage | tube rupture. | for tube repair. | | | | 6/18/15 | 6/19/15 | | Shutdown
Boiler Tube | Immediate shutdown resulting from boiler | Shutdown unit | | 4 | Total PB DP | 22:43 | 2:48 | 245.1 | Outage | tube rupture. | for tube repair. | | | | 6/18/15 | 6/19/15 | | Shutdown
Boiler Tube | Immediate shutdown resulting from boiler | Shutdown unit | | 4 | Total PB Flow | 23:02 | 2:48 | 225.9 | Outage | tube rupture. | for tube repair. | | | RJ Blowdown | 6/18/15 | 6/19/15 | | Shutdown
Boiler Tube | Immediate shutdown resulting from boiler | Shutdown unit | | 4 | Flow | 23:46 | 2:48 | 182.1 | Outage | tube rupture. | for tube repair. | | | SDA ECIS | 6/18/15 | 6/19/15 | | Shutdown
Boiler Tube | Immediate shutdown resulting from boiler | Shutdown unit | | 4 | Pressure | 23:51 | 2:48 | 176.9 | Outage | tube rupture. | for tube repair. | | | Scrubber | 6/19/15 | 6/19/15 | | Shutdown
Boiler Tube | Immediate shutdown resulting from boiler | Shutdown unit | | 4 | ECIS Pressure | 0:06 | 2:48 | 161.9 | Outage | tube rupture. | for tube repair. | | | SCC | 6/21/15 | 6/21/15 | | Malfunction | Malfunction of boiler level switch caused ID | Repaired instrument. | | 5 | Temperature | 12:10 | 16:57 | 286.7 | Instrument | Fan shutdown. | Restarted unit. | | | | 6/21/15 | 6/21/15 | S. | Malfunction | Malfunction of boiler level switch caused ID | Repaired instrument. | | 5 | RJ DP | 12:13 | 16:57 | 284.1 | Instrument | Fan shutdown. | Restarted unit. | | | Kiln | 6/21/15 | 6/21/15 | | Malfunction | Malfunction of boiler level switch caused ID | Repaired instrument. | | 5 | Temperature | 12:13 | 16:57 | 284.1 | Instrument | Fan shutdown. | Restarted unit. | # HERITAGE THERMAL SERVICES SEMI-ANNUAL SSMP, EE, & CMS REPORT July 30, 2015 | # | Name | Start Time | End Time | Duration
(min) | Cause
(report) | Cause Description | Corrective
Actions | |----|---------------------|------------------|------------------|-------------------|----------------------------------|--|---| | 5 | RJ Flow_ |
6/21/15
12:30 | 6/21/15
16:56 | 265.8 | Malfunction
Instrument | Malfunction of boiler
level switch caused ID
Fan shutdown. | Repaired instrument. Restarted unit. | | 5_ | Total PB DP | 6/21/15
12:49 | 6/21/15
14:32 | 103.3 | Malfunction
Instrument | Malfunction of boiler
level switch caused ID
Fan shutdown. | Repaired instrument. Restarted unit. | | 5_ | тнс | 6/21/15
12:59 | 6/21/15
13:08 | 8.8 | Malfunction
Instrument | Malfunction of boiler level switch caused ID Fan shutdown. | Repaired
instrument.
Restarted unit. | | 5 | тнс | 6/21/15
13:18 | 6/21/15
14:54 | 96.0 | Malfunction
Instrument | Malfunction of boiler
level switch caused ID
Fan shutdown. | Repaired instrument. Restarted unit. | | 5 | RJ Blowdown
Flow | 6/21/15
15:23 | 6/21/15
16:57 | 93.8 | Malfunction
Instrument | Malfunction of boiler
level switch caused ID
Fan shutdown. | Repaired instrument. Restarted unit. | | 6_ | SCC Pressure | 6/25/15
8:14 | 6/25/15
8:14 | 0.0 | Malfunction
Clinker Fell | Small ash fall into stag
quench caused brief
pressure spike. | Restarted unit.
Reviewed
feedstreams. | | 7 | SCC Pressure | 6/25/15
11:15 | 6/25/15
11:15 | 0.0 | Malfunction
Clinker Fell | Small ash fall into slag
quench caused brief
pressure spike. | Restarted unit. Reviewed feedstreams. | | 8 | тнс | 6/27/15
17:22 | 6/27/15
17:40 | 17,7 | Malfunction
Lance
Plugging | Plugging in sludge 2 lance caused poor combusiton. | Cleared lance.
Restarted unit. | | 9_ | Total PB Flow | 6/29/15
18:15 | 6/29/15
19:24 | 69.4 | Malfunction
Scrubber
Pump | Pump malfunction caused scrubber flow loss. | Repaired pump
Restarted unit. | # C. Startup, Shutdown, or Malfunction Plan Revision History | DATE | Revision Number | Comment | | | |------------|-----------------|--|--|--| | 9/30/2003 | 00 | Initial Plan | | | | 2/27/2004 | 1 | ESP OPLs added. Malfunction list updated. | | | | 6/23/2005 | 2 | Revised section on operating modes. | | | | 10/27/2006 | 3 | RCRA Permit modifications. Malfunction list updated. | | | | 3/15/2007 | 4 | Malfunction list updated and comments added addressing instances beyond the operator's control. | | | | 6/6/2007 | 5 | Malfunction list updated and further comments added addressing instances beyond the operator's control. | | | | 10/16/2007 | 6 | Corrected minor deficiencies noted by OEPA. | | | | 9/1/2008 | 7 | Revised to reflect facility name change | | | | 6/12/2009 | 8 | This revision included, in Section 1.6.3.1, more detailed descriptions of the most common malfunction events that occur at the facility. It also included a description of data collection procedures during times when residence time expires while an exceedance event is taking place in Section 1.6.3. | | | | 2/9/2011 | 9 | Revision created to reflect OPL changes resulting from the MACT CPT completed in 2010. Additionally, new malfunctions were added to Table 2-2. | | | | 5/1/2011 | 10 | Revision incorporated a discussion of the exceedance investigation process and procedures. Table 2-2 was also slightly revised to include addition malfunctions. | | | | 7/5/2012 | - 11 | Revision 11 (7/5/2012) created to improve language surrounding the reporting and documentation during startup and shutdown events. | | | | 10/15/2013 | 12 | Revision 12 (10/15/2013) created to account for facility name change. | | | | 6/4/2014 | 13 | Revision 13 (6/4/2014) New malfunctions were added to Table 2-2. | | | | 6/30/2015 | 14 | Revision 14 (6/30/2015) Updated new OPLS from MACT CPT. | | | # SEMI-ANNUAL EXCESS EMISSION AND CMS REPORT # Section I – General Information A. Facility Information | Facility ID: | 02-15-0233 | | |------------------------|------------------------------------|---| | Responsible Official's | Stewart Fletcher / General Manager | - | | Name / Title: | | | | Street Address: | 1250 Saint George Street | | | City: | East Liverpool | | | State: | Ohio | | | Zip Code: | 43920 | | | Facility Name: | Heritage Thermal Services | | | Facility Local Contact | Vincent Waggle | | | Name: | Environmental Engineer | | | B. Relevant standard(s) or ot | her requirement(s) t | hat is/are the basis | for this report | |-------------------------------|----------------------|----------------------|-----------------| |-------------------------------|----------------------|----------------------|-----------------| 63.10(e)(3) - Excess Emissions and Continuous Monitoring System Performance Report | C. Are you re | equesting a waiver | of recordkeep | ing and/or reporting | g requirements | under the | |---------------|--------------------|----------------|----------------------|----------------|-----------| | applicable re | levant standard(s) | in conjunction | with this report? | | | ☐ Yes ☑ No If you answered yes, you must submit the application for a waiver of recordkeeping and/or reporting requirements together with this report. The application for waiver should include whatever information you consider useful to convince the Administrator that a waiver of recordkeeping or recording is warranted. (63.10(f)(3)) - D. Check the box that corresponds to the reports you are submitting: - ☐ Summary Report Only (Complete Sections II and IV) - Excess Emission and CMS Performance Report and Summary Report (Complete Sections II, III, and IV). # Section II - Certification cial of true | Based upon information and belief formed
the above-mentioned facility, certify the in
to the best of my knowledge. | d after a reason
nformation cor | nable ind
ntained | quiry, I as a responsible officing this report is accurate and | |--|------------------------------------|----------------------|--| | Stewart Fletcher, General Manager Signature: MA H | Page 14 of 28 | Date:_ | 7/30/15 | HERITAGE THERMAL SERVICES SEMI-ANNUAL SSMP, EE, & CMS REPORT July 30, 2015 # Section III - Excess Emissions and CMS Performance Report | Have any excess emissions or exceedances of a parameter occurred during this reporting Yes □ No | period? | |--|---------| | 2. If you answered yes, complete the following table for each period of excess emissions parameter monitoring exceedances, as defined in the relevant standard(s), that occurred d periods other than startups, shutdowns, and/or malfunctions of your affected source. (63.1(11)) | uring | See next page for completed table. A. Excess Emissions | | RECOVERAGE OF THE PARTY OF | | 10 0 0 0 3 | Assertance literatural | HERSH BAZE SHARMANA | | |-----------------------------------|----------------------------|---------------------|----------------|-------------------------------------|---|---| | Name | Start Time | End Time | Duration (min) | Cause (report) | Cause Description | Corrective
Actions | | тнс | 1/9/15 0:23 | 1/9/15 1:19 | 56.1 | Operator Error Feed
Prep | Improper feed prep
caused poor combustion
and THC. | Restarted unit,
Reduced charge
sizes. | | THC | 1/9/15
20:38 | 1/9/15
21:32 | 53.7 | Operator Error Combustion/APCD | Operator failed to
provide adequate air
causing poor
combustion. | Increased air flow. Restarted unit. | | SCC
Pressure
Using
Seals | 1/1 1/15
12:29 | 1/11/15
12:30 | 0.6 | Operator Error Combustion/APCD | Manual changes to burner setting caused pressure spike. | Revised burner settings. | | THC_ | 2/1/15
19:35 | 2/1/15
20:33 | 57.9 | Operator Error Feed
Prep | Improper feed prep
caused poor combustion
and THC. | Restarted unit. Reduced charge sizes. | | SCC
Pressure
Using
Seals | 2/9/15 9:19 | 2/9/15 9:23 | 3.7 | Operator Error
Maintenance Error | Maintenance error caused ID fan shutdown | Restarted fan | | RJ DP | 2/16/15
22:12 | 2/16/15
22:13 | 0.5 | Operator Error
Combustion/APCD | Operator error caused exceedance of RJ OPL. | Restarted unit. Re-trained operator. | | THC | 3/5/15
10:55 | 3/5/15
11:52 | 56.8 | Operator Error
Combustion/APCD | Improper flow increased caused poor combustion. | Reduced flow.
Restarted unit. | | THC | 4/5/15 7:40 | <i>4/5/</i> 15 8:38 | 57.8 | Operator Error Feed
Prep | Improperly prepared waste caused poor combustion. | Restarted unit. Re-trained operator. | | THC | 4/7/15
19:06 | 4/7/15
20:06 | 60.0 | Operator Error Feed
Prep | Improperly prepared waste caused poor combustion. | Restarted unit,
Re-trained
scheduler. | | тнс | 4/8/15
15:24 | 4/8/15
16:08 | 44.9 | Operator Error Line
Flush | Operator flushed line at period of high THC. | Restarted unit. Re-trained operator. | | Scrubber
ECIS
Flow | 4/12/15
10:20 | 4/12/15
10:20 | 0.5 | Operator Error Combustion/APCD | Poor maintenance
caused loss of ECIS
flow. | Restarted unit. Corrected procedure. | | тнс | 4/17/15
19:58 | 4/17/15
20:11 | 13.1 | Operator Error Feed
Mix | Improper feed mix caused poor combustion and THC. | Restarted unit,
Spaced out
feeds. | | THC | 4/26/15
15:23 | 4/26/15
16:27 | 64.3 | Operator Error Feed
Prep | Improperly prepared waste caused poor combustion. |
Reduced
charges.
Restarted unit. | | тнс | 5/13/15
14:54 | 5/13/15
15:40 | 46.5 | Operator Error
Combustion/APCD | Improper lance
management caused
THC- | Re-trained
operator,
Restarted unit, | | THC | 5/16/15
17:16 | 5/16/15
18:16 | 60.1 | Operator Error Feed
Prep | Improperly prepared waste caused poor combustion. | Reduced
charges.
Restarted unit | # B. CMS Performance - 1. Has a CMS been inoperative (except for zero/low-level and high-level checks), out of control (as defined in 63.8(c)(7)(i)), repaired, or adjusted during this reporting period? ☐ Yes ☒ No - 2. If you answered yes, complete the following table for each period a CMS was out of control, repaired, or adjusted: (63.10(c)(5)-(6), (10)-(12); 63.8(c)(8). | CMS Type | Mfg | Process ID | Start Date | Completion
Date | Nature & Cause of
Malfunction (if any) | Corrective Actions Taken or Preventative Measures Adopted | Nature of Repairs or
Adjustments Made
to Inoperable or
OOC CMS | |------------|-----------|---------------------|------------|--------------------|---|---|---| | Stack Flow | Ultraflow | Stack monitor
#1 | 3/23/2015 | 3/24/2015 | Calibration drift | Manual Recalibration | Manufacturer
Recommended
Procedure | | THC | CAI | Stack monitor
#1 | 6/26/2015 | 6/27/2015 | Calibration drift | Manual Recalibration | Manufacturer
Recommended
Procedure | 3. Indicate the total process operating time during the reporting period. (63.10(c)(13)) Total process operating time (days): Days in reporting period: 181 Facility total process operating time (days): 169.92 Total days on waste: 165.21 Total days on fuels: 4.71 # <u>Section IV – Summary Report – Gaseous and Opacity Excess Emissions and CMS Performance</u> # A. Report Date and Submittal Reporting Period Indicate the reporting period covered by this submittal and the date of this summary report. (63.10(e)(3)(vi)) | Reporting Period beginning date | Reporting Period ending date | Summary Report Date | |---------------------------------|------------------------------|---------------------| | January 1, 2015 | June 30, 2015 | July 31, 2015 | # **B. Process Description and Monitoring Equipment Information** Complete the following process description and monitoring equipment information table for each affected source process unit: | Total operating time of affected source during the reporting period (days) | |--| | 237,908 minutes of unit burning/ retaining hazardous waste; 6,772 minutes on virgin fuels. | | | Process unit name | TENENS TO THE PERSON OF PE | | |---------------------------------|-------------------|--|--| | Rotary Kiln Incineration System | | | | | | Process unit description | | |---|---------------------------------|--| | Rotary kiln and ancillary equipment for | combustion of hazardous wastes. | | Emission and/or operating parameter limitations specified in the relevant standards See Table 1 and 2 below. # TABLE 1 – APPLICABLE EMISSIONS STANDARDS | Emissions Parameter | Limit | Citation | |--|-------------------------|--------------------------| | Destruction and Removal Efficiency (DRE) | ≥99.99% | 40 CFR 63.1203(c)(1) | | PCDDs/PCDFs | ≤0.20 ng/dscm TEQ basis | 40 CFR 63.1219(a)(1)(i) | | HCI/CI ₂ | ≤ 32 ppmv dry as HCl | 40 CFR 63.1219(a)(6) | | Mercury | ≤ 130 µg/dscm | 40 CFR 63.1219(a)(2) | | Semi volatile Metals (SVM) | ≤ 230 µg/dscm | 40 CFR 63.1219(a)(3) | | Low Volatile Metals (LVM) | ≤ 92 µg/dscm | 40 CFR 63.1219(a)(4) | | Totals Hydrocarbons | ≤ 10 ppmv | 40 CFR 63.1219(a)(5)(ii) | | Particulate Matter (PM) | ≤ 0.013 gr/dscf or | 40 CFR 63.1219(a)(7) | | | 34 mg/dscm | | # **TABLE 2 - OPERATING PARAMETERS** | Process Parameter (Tag ID) | Units | Avg.
Period | Basis | Limit Prior / After 6/18/15 ¹ | |---|----------|----------------|---|--| | Minimum Feed Lance Atomization
Pressure ² | Psig | Instant. | Mfg. Rec. | 30 / 30 | | Maximum SCC Pressure (PT-4307 & PT-4308) | In. w.c. | | eptember 4, 2003
ncerning this requi | letter from US EPA irement. | | Maximum Temperature at ESP Inlet (TI-6002A/B) | °F | 1-hr | СРТ | 424 / 425.3 | | Maximum Pumpable Waste Feed Rate (WQI-9000T) | Lb/hr | 1-hr | СРТ | 29,926 / 25,857 | | Maximum Total Waste Feed Rate (WQI-9000F) | Lb/hr | 1-hr | CPT | 35,069 / 31,513 | | Minimum Kiln Temperature (TI-4300A/B) | °F | 1-hr | CPT | 1,718 / 1,695 | | Minimum SCC Temperature (TI-4310A/B) | °F | l-hr | СРТ | 1,747 / 1,710 | | Maximum Process Gas Flow rate (Fl-7510A/B) | Scfm | 1-hr | CPT | 67,505 / 67,119 | | Minimum Loc. 1 Carbon Feed Rate (WI-7003) | Lb/hr | 1-hr | CPT | | ¹ MACT Notice of Compliance submitted 6/18/2015 contained new operating parameter limits. Page 19 of 28 ² Each liquid lance has a pressure switch. When the pressure drops below 30 psig on any lance the feed from that lance will be automatically cut off. Tag Ids: PSL-3113 (High BTU), PSL-3123 (Organic), PSL-3143 (Aqueous), PSL-3133 (Sludge), PSL-3153 (Slurry), and PSL-3100A/B (Sludge 2). | Process Parameter (Tag ID) | Units | Avg.
Period | Basis | Limit Prior / After 6/18/15 ¹ | |--|------------|-----------------|---|--| | Minimum Loc. 2 Carbon Feed Rate (WI-7002) | Lb/hr | 1-hr | CPT | | | Minimum Loc. 1 Carbon Feed Pressure (PI-5732) | Psig | 1-hr | CPT | 3.0 / 3.0 | | Minimum Loc. 2 Carbon Feed Pressure (PI-7132) | Psig | 1-hr | CPT | 3.0 / 3.0 | | Maximum Ash Feed Rate (WQI-9000AH) | Lb/hr | 12-hr | CPT | 10,333 / 11,180 | | Minimum Ring Jet Pressure Drop (DPI-7401) | in. w.c. | 1-hr | CPT | 28.0 / 27.0 | | Minimum Scrubber (1st and 2nd Packed
Bed, combined) Liquid Flow Rate (FQI-
7201) | gpm | 1-hr | CPT | 1,287 / 1,291.7 | | Minimum Scrubber (Ring Jet) Liquid
Flow Rate (FI-7404A/B) | gpm | 1-hr | CPT | 446 / 494.7 | | Minimum Scrubber (Ring Jet)
Blowdown (FI-7403) | gpm | 1-hr | CPT | 19.5 / 19.2 | | Minimum Scrubber (Ring Jet) Tank
Level (LIC-7401) | feet | I-hr | CPT | 1.7 / 1.7 | | ESP Parameters | 45,000 vol | ts and 90 sparl | ks per minute, each
each field (see US | le with set points of
a field; and minimum
S EPA letters dated | | Minimum Scrubber (1 st and 2 nd Packed
Bed, combined) Feed Pressure | in. w.c. | 1-hr | Mfg. Rec. | Not Req'd. | | Minimum Scrubber (1 st and 2 nd Packed
Bed) Pressure Drop | in. w.c. | 1-hr | Mfg. Rec. | 1.3 / 1.3 | | Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) | pH units | 1-hr | CPT | 7.6 / 7.4 | | Maximum Total Chlorine Feed Rate (WQI-9000CL) | Lb/hr | 12-hr | СРТ | 2,032 / 2,041 | | Maximum Total Semi volatile Metals
Feed Rate (WQI-9000SV) | Lb/hr | 12-hr | CPT | 83.2 / 102.2 | | Maximum Total Low Volatile Metals
Feed Rate (WQI-9000LV) | Lb/hr | 12-hr | CPT | 400 / 400 | | Maximum Total Pumpable Low Volatile
Metals Feed Rate (WQI-9000PLV) | Lb/hr | 12-hr | CPT | 400 / 400 | | Maximum Total Mercury Feed Rate
(WQI-9000M) | lb/hr | 12-hr | CPT | 0.14 / 0.33 | | Stack THC (AI-7850) | ppmv | l-hr | Regulatory
Requirement | <10 | **Monitoring Equipment Information** | On Constitution was a first to the | Monitol | ring Equipme | ent Intorm | ation | | |--|--|--------------------------------------|---------------|-----------------------------------
-------------------------| | Monitored Parameter | Instrument
Description | Range and
Units of
Measurement | Tag
Number | Last
Calibration/Audit
Date | Accuracy of Measurement | | Power -ESP Field #1 | Environmental
Elements Controller | 0 – 500 ma | EI-6700 | 3/17/2015 | N/A | | Power -ESP Field #2 | Environmental
Elements Controller | 0 – 500 ma | EI-6710 | 3/17/2015 | N/A | | Power -ESP Field #3 | Environmental
Elements Controller | 0 – 750 ma | EI-6720 | 3/17/2015 | N/A | | Scrubber Second Packed
Bed Liquid PH | Electro-Chemical
Devices | 0 = 14 pH units | AT-7307A | Performed
Weekly | ± 5% of range | | Scrubber Second Packed
Bed Liquid PH | Electro-Chemical
Devices | 0 – 14 pH units | AT-7307B | Performed
Weekly | ±5% of range | | Scrubber 2nd Packed Bed
Differential Pressure | Rosemount
Transmitter
/Pressure transducer | 0 – 8 in w.c. | DPT-7307 | 3/20/2015 | ± 2% of range | | Pumpable Feed Rate
High BTU Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3110 | 2/19/2015 | ± 10% of range | | Pumpable Feed Rate
Organic Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3120 | 2/19/2015 | ± 10% of range | | Pumpable Feed Rate
Sludge Lance | Positive
displacement pump
(calculation) | 0 – 15,000 lb/hr | FT-3130 | Not Applicable
(calculation) | N/A | | Pumpable Feed Rate
Aqueous Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3140 | 2/19/2015 | ± 10% of range | | Pumpable Feed Rate
Slurry Lance | Positive
displacement pump
(calculation) | 0 – 15,000 lb/hr | FT-3150 | Not Applicable
(calculation) | N/A | | Scrubber First Packed
bed flow rate | PolySonics Doppler
Flow | 0 – 1,500 gpm | FT-7204A | 2/18/2015 | ± 10% of range | | Scrubber First Packed bed flow rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7204B | 2/18/2015 | ± 10% of range | | Monitored Parameter | Instrument
Description | Range and
Units of
Measurement | Tag
Number | Last Calibration/Audit Date | Accuracy of
Measurement | |---|--|--------------------------------------|------------------------|-----------------------------|----------------------------| | Scrubber Second Packed bed flow rate | PolySonics Doppler
Flow | 0 – 1,500 gpm | FT-7304A | 2/18/2015 | ± 10% of range | | Scrubber Second Packed bed flow rate | Panametrics
Ultrasonic Flow | 0 = 1,500 gpm | FT-7304B | 2/18/2015 | ± 10% of range | | Ring Jet Blow Down | Panametrics
Ultrasonic Flow | 0 – 500 gpm | FT-7403A | 2/18/2015 | ± 10% of range | | Ring Jet Blow Down | Panametrics
Ultrasonic Flow | 0 – 500 gpm | FT-7403B | 2/18/2015 | ± 10% of range | | Scrubber Ring Jet Liquid
Flow Rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7404A | 2/18/2015 | ± 10% of range | | Scrubber Ring Jet Liquid
Flow Rate | Panametrics
Ultrasonic Flow | 0 = 1,500 gpm | FT-7404B | 2/18/2015 | ± 10% of range | | Ring Jet Vessel Level | Rosemount
Transmitter/
Pressure | 0 – 5 feet | LT-7401A | 1/21/2015 | ± 2% of range | | Ring Jet Vessel Level | Rosemount
Transmitter/
Pressure | 0 – 5 feet | LT-7401B | 1/21/2015 | ± 2% of range | | Kiln Inlet Shroud
(differential) Pressure
(reference to SCC) | Rosemount
Pressure transducer | 0 - 10 in. w.c. | PDT-4308 | 3/20/2015 | ± 2% of range | | Kiln Outlet Shroud
(differential) Pressure
(reference to SCC) | Rosemount
Pressure transducer | 0 - 10 in. w.c. | PDT-4306 | 3/18/2015 | ± 2% of range | | Kiln Inlet Shroud
Pressure (reference to
ambient) | Rosemount
Pressure transducer | 0 - 10 in. w.c. | PT-4307 | 3/18/2015 | ± 2% of range | | Scrubber 1st Packed Bed
Differential Pressure | Rosemount
Transmitter
/Pressure transducer | 0 – 8 in w.c. | PDT-7207 | 3/20/2015 | ± 2% of range | | Ring Jet Differential
Pressure | Rosemount
Transmitter/
Pressure | 0 – 40 in w.c.
(changed 2005) | PDT-7401A
PDT-7405A | 3/20/2015 | ± 2% of range | | Monitored Parameter | Instrument
Description | Range and
Units of
Measurement | Tag
Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |--|---|--------------------------------------|------------------------|-----------------------------------|----------------------------| | Ring Jet Differential
Pressure | Rosemount
Transmitter/
Pressure | 0 – 40 in w.c.
(changed 2005) | PDT-7401B
PDT-7405B | 3/20/2015 | ± 2% of range | | Sludge 2 Lance
Atomizing Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3100A | 7/24/2014 | ± 5% of range | | Sludge 2 Lance
Atomizing Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3100B | 4/18/2015 | ± 5% of range | | High Btu Lance
Atomizing Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3113 | 4/18/2015 | ± 5% of range | | Organic Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3123 | 4/18/2015 | ± 5% of range | | Sludge Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3133 | 4/18/2015 | ± 5% of range | | Aqueous Lance
Atomizing Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3143 | 4/18/2015 | ± 5% of range | | Slurry Lance Atomizing
Pressure | Generic pressure switch | 0 50 psi | PSL-3153 | 4/18/2015 | ± 5% of range | | Kiln / Secondary
Combustion Chamber
Pressure | Rosemount
Transmitter /
Pressure transducer | -3.5 - +2.5 in.
w.c. | PT-4300A | 3/18/2015 | ± 2% of range | | Kiln / Secondary
Combustion Chamber
Pressure | Rosemount
Transmitter /
Pressure transducer | -3.5 - +2.5 in.
w.c. | PT-4300B | 3/18/2015 | ± 2% of range | | Spray Dryer Carbon
Carrier Fluid Pressure | Rosemount
Transmitter /
Pressure | 0 – 15 psi | PT-5732 | 3/18/2015 | ± 2% of range | | Scrubber Carbon Carrier
Fluid Pressure | Rosemount
Transmitter /
Pressure | 0 – 15 psi | PT-7132 | 3/18/2015 | ± 2% of range | | ESP Inlet Temperature | Rosemount
Transmitter /
Thermocouple | 0 - 600 °F | TT-6002A | WFCO Test done
every 3 weeks | ± 2% of range | | Monitored Parameter | Instrument
Description | Range and
Units of
Measurement | Tag
Number | Last Calibration/Audit Date | Accuracy of Measurement | |--|--|--------------------------------------|----------------------|---------------------------------|-------------------------| | ESP Inlet Temperature | Rosemount
Transmitter /
Thermocouple | 0 - 600 °F | TT-6002B | WFCO Test done
every 3 weeks | ± 2% of range | | Kiln Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4300A | 8/21/2014 | ± 1% of range | | Kiln Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4300B | 4/9/2015 | ± 1% of range | | Secondary Combustion
Chamber Temperature | Land CD1 Thermometer | 752 – 3272 °F | TT-4310A | 2/17/2015 | ± 1% of range | | Secondary Combustion
Chamber Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4310B | 9/25/2014 | ± 1% of range | | Pumpable Feed Rate
Direct Drum Scale A | Generic Load Cell
(Loss in weight
calculation) | 0 – 5,000 lb | WT-3050 | 6/13/2015 | ± 3% of range | | Pumpable Feeds
Direct Drum Scale B | Generic Load Cell
(Loss in weight
calculation) | 0 – 5,000 lb | WT-3055 | 6/13/2015 | ±3% of range | | Pumpable FeedsTanker
Scale A (South Bay) | Generic Load Cell.
Loss in weight
calculation | 0 – 80,000 lb | WT-3060 | 6/13/2015 | ± 3% of range | | Pumpable Feeds
Tanker Scale B (East
Bay) | Generic Load Cell.
Loss in weight
calculation | 0 — 100,000 1ь | WT-3065 | 6/13/2015 | ± 3% of range | | Conveyor Scale Drum
Processing | Generic Load Cell
(Scale) | 0 = 2,000 lb | WT-3070
ARTS Data | 6/13/2015 | ± 3% of range | | Splitting Scale Drum
Processing | Generic Load Cell
(Scale) | 0 – 5,000 lb | WT-3075
ARTS Data | 6/13/2015 | ± 3% of range | | Floor Scale Drum
Processing Lab Pack | Generic Load Cell
(Scale) | 0 – 2,000 lb | WT-3080
ARTS Data | 6/13/2015 | ± 3% of range | | Kiln Bulk Feed Crane | Generic Load Cell
(Scale) | 0 – 10,000 lb | WT-3105 | 6/13/2015 | ± 3% of range | | Monitored Parameter | Instrument
Description | Range and
Units of
Measurement | Tag
Number | Last Calibration/Audit Date | Accuracy of
Measurement | |---|---|--|---------------|-----------------------------|---| | Scrubber Carbon Feed
Rate | Generic Load Cell /
Loss in Weight
Feeder | 0 – 50 lb/hr | WT-7002 | 6/13/2015 | ± 1% of range | | Spray Dryer Carbon Feed
Rate | Generic Load Cell /
Loss in Weight
Feeder | 0 – 50 lb/hr | WT-7003 | 6/13/2015 | ± 1% of range | | Total Hydrocarbon
Analyzer (Stack) | California
Analytical
Instruments, Inc. | 0 – 100 ppm
0 – 500 ppm
as Propane | AI-7850A | 5/28/2015 | £ ± 5% of span | | Total Hydrocarbon
Analyzer (Stack) | California
Analytical
Instruments, Inc. | 0 – 100 ppm
0 – 500 ppm
as Propane | AI-7850B | 5/28/2015 | £±5% of span | | Stack Oxygen Analyzers
(dry) | Ametek | 0 – 25 % | AI-7860A | 5/28/2015 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(dry) | Ametek | 0 – 25 % | AI-7860B | 5/28/2015 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(wet) | Ametek | 0 – 25 % | AI-7865A | 5/28/2015 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(wet) | Ametek | 0 – 25 % | AI-7865B | 5/28/2015 | ± 1.0% Oxygen | | Flue Gas Flow Rate
(Scrubber Outlet) | Calculation
Stack - Reheat Flow | 0 - 80,000 scfm | FT-7510A | 5/28/2015 | < 15% relative
accuracy or <
7.5% of
the applicable
standard | | Flue Gas Flow Rate
(Scrubber Outlet) | United Sciences
UltraSonic Gas
Flow | 0 = 80,000 scfm | FT-7510B | 5/28/2015 | < 15% relative
accuracy or < 7.5% of
the applicable
standard | | Flue Gas Flow Rate
(Stack) | United Sciences
UltraSonic Gas
Flow | 0 – 100,000
scfm | FT-7805A | 5/28/2015 | < 15% relative
accuracy or < 7.5% of
the applicable
standard | | Flue Gas Flow Rate
(Stack) | Calculation
Process + Reheat
Flow | 0 – 100,000
scfm | FT-7805B | 5/28/2015 | < 15% relative
accuracy or < 7.5% of
the applicable
standard | # C. Emission Data Summary Complete the following emission data summary table for each affected source: (63.10(e)(3)(vi)(l)) Total duration of excess emission / parameter exceedances (minutes for opacity, hours for gases) | Excess Emissions | Total
Duration(min) | Total Operating time of affected source during the reporting period (min) | % Of total source operating time during which excess emissions occurred | |---|------------------------|---|---| | Maximum Ash Feed Rate (WQI-
9000AH) | 0 | 244,680 | 0.00% | | Maximum Process Gas Flowrate (FI-7510A/B) | 0 | 244,680 | 0.00% | | Maximum Pumpable Waste Feed
Rate (WQI-9000T) | Ö | 244,680 | 0.00% | | Maximum SCC Pressure (PI-
4300A/B) | 307.7 | 244,680 | 0.13% | | Maximum Temperature at ESP Inlet (TI-6002A/B) | 0 | 244,680 | 0.00% | | Maximum Total Chlorine Feed Rate (WQI-9000CL) | 0 | 244,680 | 0.00% | | Maximum Total Low Volatile Metals
Feed Rate (WQI-9000LV) | 0 | 244,680 | 0.00% | | Maximum Total Mercury Feed Rate (WQI-9000M) | 0 | 244,680 | 0.00% | | Maximum Total Pumpable Low
Volatile Metals Feed Rate (WQI-
9000PLV) | 0 | 244,680 | 0.00% | | Maximum Total Semi volatile Metals
Feed Rate (WQI-9000SV) | 0 | 244,680 | 0.00% | | Maximum Total Waste Feed Rate
(WQI-9000F) | 0 | 244,680 | 0.00% | | Minimum Feed Lance Atomization
Pressure | 0 | 244,680 | 0.00% | | Minimum Kiln Temperature (TI-
4300A/B) | 1125.6 | 244,680 | 0.46% | | Minimum Loc. 1 Carbon Feed
Pressure (PI-5732) | 504.5 | 244,680 | 0.21% | | Minimum Loc. 2 Carbon Feed
Pressure (PI-7132) | 258.8 | 244,680 | 0.11% | | Minimum Loc. 1 Carbon Feed Rate (WI-7003) | 168 | 244,680 | 0.07% | | Minimum Loc. 2 Carbon Feed Rate (WI-7002) | 0.5 | 244,680 | 0.00% | | Minimum Ring Jet Pressure Drop
(DPI-7401) | 1300.3 | 244,680 | 0.53% | | Minimum SCC Temperature (TI-
4310A/B) | 1283.5 | 244,680 | 0.52% | | Excess Emissions | Total
Duration(min) | Total Operating time of affected source during the reporting period (min) | % Of total source operating time during which excess emissions occurred | |---|------------------------|---|---| | Minimum Scrubber (1 st and 2 rd
Packed Bed) Pressure Drop | 555.4 | 244,680 | 0.23% | | Minimum Scrubber (1 st and 2 ^{nq} Packed Bed, combined) Liquid Flow Rate (FQI-7201) | 328 | 244,680 | 0.13% | | Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) | 8.4 | 244,680 | 0.00% | | Minimum Scrubber (Ring Jet)
Blowdown (FI-7403) | 418.1 | 244,680 | 0.17% | | Minimum Scrubber (Ring Jet) Liquid
Flow Rate (FI-7404A/B) | 674.8 | 244,680 | 0.28% | | Minimum Scrubber (Ring Jet) Tank
Level (LIC-7401) | 0 | 244,680 | 0.00% | | THC | 1946.1 | 244,680 | 0.80% | | ESP Controls | 434.7 | 244,680 | 0.18% | | Total Duration | 9314.4 | 244,680 | 3.81% | Summary of causes of excess emissions / parameter exceedances (% of total duration by cause): | TYPE | Sum Of Duration | % of Total Duration | |----------------------------|-----------------|---------------------| | Startup/shutdown | 3929.1 | 42.18% | | Control Equipment Problems | 3733.4 | 40.08% | | Process Problems | 470.1 | 5.05% | | Other unknown causes | 244.70 | 2.63% | | Other known causes | 937.00 | 10.06% | | | 9314.30 | 100.00% | #### D. CMS Performance Summary Complete the following CMS performance summary table for each affected source: (63.10(e)(3)(vi)(J)) | | Total duration of CMS downtime ¹ | |-----------|---| | 0 minutes | | | | Total operating time of affected source during the reporting period | | | roug ober would rouge or attented source driving the rebolding belief | | Percent of total source operating time during which CMS were down | | | |---|--|--| | 0.00 % | | | ¹ Heritage Thermal Services maintains redundant CMS equipment in most cases to prevent CMS downtime. There were no periods during this time that this redundancy did not prevent CMS downtime. | Summary of causes of CMS downtime (percent of downtime by cause) | Minutes | |--|---------| | Monitoring equipment malfunctions | 0 | | Non-monitoring equipment malfunctions | 0 | | Quality assurance / quality control calibrations | 0 | | Other known causes | 0 | | Other unknown causes | 0 | ### E. CMS, Process, or Control Changes - Have you made any changes in CMS, processes, or controls since the last reporting period? ☐ Yes ☑ No (if no, end of form) (63.10(2)(3)(vi)(K)) - 2. If you answered yes, please describe the changes below: #### **END OF REPORT** bcc: Env. Dept Stewart Fletcher Bob Buchheit Kevin Lloyd file name: environ/MACT/HWC MACT/exceedances/semiannual2015a ECF: 2015/MACT/ Semiannual A